
Learn As You Go

Apr 28, 2020

Contents:

1 Installation 3
1.1 Examples . 3
1.2 API . 10

2 Indices and tables 15

Index 17

i

ii

Learn As You Go

Python implementation of the Learn As You Go algorithm described in arxiv:1506:01079 and arxiv:2004.11929.

The package defines a decorator that can be applied to functions to convert them to functions which learn outputs
as they go and emulate the true function when expected errors are low. Two emulators are included: the k-nearest
neighbors Monte Carlo accelerator described there, and a simple neural network.

The basic usage of the emulator code is something like this:

@emulate(CholeskyNnEmulator)
def loglike(x):

"""
Your complex and expensive function here
"""
return -np.dot(x,x)

This decorates the function loglike so that it is an instance of the Learner class. It can be used in the same way
as the original function: just call it as loglike(x).

The __call__(x) method now hides some extra complexity: it uses the Learn As You Go emulation scheme. It
learns both the output of loglike(x) and the difference between the emulated and the true values of loglike(x)
so that it can make a prediction of future the error residuals. We then put a cutoff on the amount of error that one will
allow for any local evaluation of the target function. Any call to the emulator that has a too-large error will be discarded
and the actual function loglike(x) defined above will be evaluated instead.

The logic for generating training sets and returning a value from either the true function or the emulated function are
contained in the Learner class. The Learner class relies on an emulator class to do the actual emulation.

You can define you own emulator. Define a class that inherits from BaseEmulator and define two
methods on it: set_emul_func(self, x_train: np.ndarray, y_train: np.ndarray) and
set_emul_error_func(self, x_train: np.ndarray, y_train: np.ndarray) that set func-
tions for, respectively, self.emul_func and self.emul_error_func. An example of this definition is pro-
vided in examples/example_custom_emulator.py.

See readthedocs.org for more documentation.

Contents: 1

http://arxiv.org/abs/arXiv:1506.01079
https://arxiv.org/abs/2004.11929
https://badge.fury.io/py/layg
https://zenodo.org/badge/latestdoi/240627897
https://learnasyougoemulator.readthedocs.io/en/latest/?badge=latest
https://github.com/auckland-cosmo/LearnAsYouGoEmulator/actions?query=workflow%3Apytest
https://github.com/auckland-cosmo/LearnAsYouGoEmulator/actions?query=workflow%3Adoc
https://github.com/auckland-cosmo/LearnAsYouGoEmulator/actions?query=workflow%3Alints
https://learnasyougoemulator.readthedocs.io

Learn As You Go

2 Contents:

CHAPTER 1

Installation

pip

The package is available on pypi.org. Install it with

pip install layg

anaconda

If you use anaconda you can create an appropriate environment and install to your python path by running

conda env create --file environment.yml
pip install -e .

from this directory.

1.1 Examples

1.1.1 Basic Usage

An example of basic use of layg.

"""
An example use of the `layg` package
"""

import matplotlib.pyplot as plt # type: ignore
import numpy as np # type: ignore

TODO: remove NOQA when isort is fixed
from layg import CholeskyNnEmulator as Emulator # NOQA
from layg import emulate # NOQA

(continues on next page)

3

https://pypi.org/project/layg/

Learn As You Go

(continued from previous page)

def main():

ndim = 2

######################
######################
Toy likelihood
@emulate(Emulator)
def loglike(x):

if x.ndim != 1:
loglist = []
for x0 in x:

loglist.append(-np.dot(x0, x0))
return np.array(loglist)

else:
return np.array([-np.dot(x, x)])

######################
######################

Make fake data
def get_x(ndim):

"""
Sample from a Gaussian with mean 0 and std 1
"""

return np.random.normal(0.0, 1.0, size=ndim)

if ndim == 1:
Xtrain = np.array([get_x(ndim) for _ in range(1000)])
xlist = np.array([np.linspace(-3.0, 3.0, 11)]).T

elif ndim == 2:

Xtrain = np.array([get_x(ndim) for _ in range(10000)])
xlist = np.array([get_x(ndim) for _ in range(10)])

else:
raise RuntimeError(

"This number of dimensions has not been implemented for testing yet."
)

Ytrain = np.array([loglike(X) for X in Xtrain])
loglike.train(Xtrain, Ytrain)

loglike.output_err = True
for x in xlist:

print("x", x)
print("val, err", loglike(np.array(x)))

loglike.output_err = False

Plot an example
assert loglike.trained

fig = plt.figure()
ax = fig.add_subplot(111)

(continues on next page)

4 Chapter 1. Installation

Learn As You Go

(continued from previous page)

x_len = 100

x_data_plot = np.zeros((x_len, ndim))
for i in range(ndim):

x_data_plot[:, i] = np.linspace(0, 1, x_len)

y_true = np.array([loglike.true_func(x) for x in x_data_plot])
y_emul = np.array([loglike(x) for x in x_data_plot])
y_emul_raw = np.array([loglike.emulator.emul_func(x) for x in x_data_plot])

ax.plot(x_data_plot[..., 0], y_true, label="true", color="black")
ax.scatter(x_data_plot[..., 0], y_emul, label="emulated", marker="+")
ax.scatter(

x_data_plot[..., 0],
y_emul_raw,
label="emulated\n no error estimation",
marker="+",

)

ax.legend()

ax.set_xlabel("Input")
ax.set_ylabel("Output")

fig.savefig("check.png")

def test_main():
main()

if __name__ == "__main__":
main()

1.1.2 Use with emcee

An example using layg with the common Markov chain Monte Carlo sampler emcee.

"""
An example use of the `learn_as_you_go` package with emcee
"""

import emcee # type: ignore
import gif # type: ignore
import matplotlib.pyplot as plt # type: ignore
import numpy as np # type: ignore

TODO: remove NOQA when isort is fixed
from layg import CholeskyNnEmulator # NOQA
from layg import emulate # NOQA

def main():

(continues on next page)

1.1. Examples 5

https://github.com/dfm/emcee

Learn As You Go

0.0 0.2 0.4 0.6 0.8 1.0
Input

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Ou
tp

ut

true
emulated
emulated
 no error estimation

6 Chapter 1. Installation

Learn As You Go

(continued from previous page)

ndim = 2

nwalkers = 20
niterations = 1000
nthreads = 1

np.random.seed(1234)

Toy likelihood
@emulate(CholeskyNnEmulator)
def loglike(x):

return np.array([-np.dot(x, x) ** 1])

loglike.output_err = True
loglike.abs_err_local = 2

Starting points for walkers
p0 = np.random.normal(-1.0, 1.0, size=(nwalkers, ndim))
sampler = emcee.EnsembleSampler(nwalkers, ndim, loglike, threads=nthreads)

Sample with emcee
with open("test.txt", "w") as f:

for result in sampler.sample(p0, iterations=niterations, storechain=True):

for pos, lnprob, err in zip(result[0], result[1], result[3]):
for k in list(pos):

f.write("%s " % str(k))
f.write("%s " % str(lnprob))
f.write("%s " % str(err))
f.write("\n")

print("n exact evals:", loglike._nexact)
print("n emul evals:", loglike._nemul)

Plot points sampled
nframes = 50
duration = 10
frames = []
lim = (-3, 3)

for i in range(0, niterations * nwalkers, niterations * nwalkers // nframes):
x = sampler.chain.reshape(niterations * nwalkers, ndim)[:i]
y = np.array(sampler.blobs).reshape(niterations * nwalkers)[:i]
frame = plot(x, y, lim)
frames.append(frame)

gif.save(frames, "mc.gif", duration=duration)

@gif.frame
def plot(x, err, lim):

true = x[err == 0.0]
emul = x[err != 0.0]

plt.figure(figsize=(5, 5), dpi=100)

(continues on next page)

1.1. Examples 7

Learn As You Go

(continued from previous page)

marker = "."
alpha = 0.3

plt.scatter(true[:, 0], true[:, 1], marker=marker, alpha=alpha, label="true")
plt.scatter(emul[:, 0], emul[:, 1], marker=marker, alpha=alpha, label="emulated")

plt.xlim(lim)
plt.ylim(lim)

legend = plt.legend(loc=1)
for lh in legend.legendHandles:

lh.set_alpha(1)

def test_main():
main()

if __name__ == "__main__":
main()

1.1.3 Custom Emulators

This example shows how to build a custom emulator by defining a subclass of layg.emulator.BaseEmulator.

The emulator simply learns the mean and standard deviation of the supplied training data.

In this example the emulated function is very simple: it returns real numbers drawn from a Gaussian distribution with
some mean.

from typing import Callable

import matplotlib.pyplot as plt # type: ignore
import numpy as np # type: ignore

from layg import BaseEmulator, emulate # NOQA

class MeanEmulator(BaseEmulator):
"""
An emulator that returns the mean of the training values

The error estimate is the standard deviation of the error in the cross validation
→˓data.

This emulator is not very useful other than as an example of how to write one.
"""

def set_emul_func(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
self.emul_func: Callable[[np.ndarray], np.ndarray] = lambda x: np.mean(y_

→˓train)

def set_emul_error_func(self, x_cv: np.ndarray, y_cv_err: np.ndarray) -> None:
self.emul_error: Callable[[np.ndarray], np.ndarray] = lambda x: y_cv_err.std()

MEAN = 2 + np.random.uniform(size=1)
(continues on next page)

8 Chapter 1. Installation

Learn As You Go

(continued from previous page)

@emulate(MeanEmulator)
def noise(x: np.ndarray) -> np.ndarray:

"""
Sample from a Gaussian distribution

The scatter is small enough that the emulated value is always used.
"""

return np.random.normal(loc=MEAN, scale=1e-2, size=1)

def main():
"""
Plot some output from this emulator
"""

NUM_TRAIN = noise.init_train_thresh
NUM_TEST = 20
XDIM = 1

Train the emulator
x_train = np.random.uniform(size=(NUM_TRAIN, XDIM))
y_train = np.array([noise(x) for x in x_train])

Output error estimates
noise.output_err = True

Get values from the trained emulator
x_emu = np.random.uniform(size=(NUM_TEST, XDIM))

y_emu = np.zeros_like(x_emu)
y_err = np.zeros_like(x_emu)

for i, x in enumerate(x_emu):
val, err = noise(x)
y_emu[i] = val
y_err[i] = err

Plot the results
fig = plt.figure()
ax = fig.add_subplot(111)

ax.scatter(x_train[:, 0], y_train, marker="+", label="training values")
ax.errorbar(

x_emu,
y_emu,
yerr=y_err.flatten(),
linestyle="None",
marker="o",
capsize=3,
label="emulator",
color="red",

)

ax.legend()
(continues on next page)

1.1. Examples 9

Learn As You Go

(continued from previous page)

`__file__` is undefined when running in sphinx
try:

fig.savefig(__file__ + ".png")
except NameError:

pass

def test_main():
"""
Runs in pytest
"""
main()

if __name__ == "__main__":
main()

0.0 0.2 0.4 0.6 0.8 1.0

2.35

2.36

2.37

2.38

2.39

2.40

2.41
training values
emulator

1.2 API

10 Chapter 1. Installation

Learn As You Go

layg.learner.Learner(true_func, . . .) A class that contains logic for learning as you go
layg.emulator.BaseEmulator() Base class from which emulators should inherit
layg.emulator.cholesky_nn_emulator.
CholeskyNnEmulator()

An emulator based on Cholesky decomposition and
nearest neighbours

layg.emulator.torch_emulator.
TorchEmulator()

Class that uses pytorch to do emulation

1.2.1 layg.learner.Learner

class layg.learner.Learner(true_func: Callable[[numpy.ndarray], numpy.ndarray], emula-
tor_class)

A class that contains logic for learning as you go

This class does not contain any emulation but should be constructed with an emulator containing emulation
logic. The emulator must be a subclass of BaseEmulator, implementing two methods, set_emul_func and
set_emul_error_func, that set the respective functions.

Attributes

emulator_class [BaseEmulator] The type of emulator used.

emulator [BaseEmulator] An instance of the class emulator_class. This is where the heavy
lifting goes on.

true_func [Callable] The function which is emulated

frac_err_local [float] Maximum fractional error in emulated function. Calls to emulation func-
tion that exceed this error level are evaluated exactly instead. Default: 1.0

abs_err_local [float] Maximum absolute error allowed in emulated function. Calls to emulation
function that exceed frac_err_local but are lower than abs_err_local are emulated, rather
than exactly evaluated. FIXME: this doesn’t happen Default: 0.05

output_err [bool] Whether to output an error estimate. Set to False if you do not want the error
to be an output of the emulated function. Set to True if you do. Default: False

trained [bool] Whether the emulator has been trained

used_train_x [List[np.ndarray]]

used_train_y [List[np.ndarray]] Values from the true function that were used last time the em-
ulator was trained

batch_train_x [List[np.ndarray]]

batch_train_y [List[np.ndarray]] Values from the true function that have not yet been used to
train the emulator

init_train_thresh [int] Number of points to accumulate before training the emulator

frac_cv [float] Fraction of training set to use for error modelling The default value of 0.5 means
that the prediction and the error are estimated off the same amount of data.

Methods

__call__(self, x) The method that is executed when the wrapped func-
tion is called

Continued on next page

1.2. API 11

Learn As You Go

Table 2 – continued from previous page
emulation_is_valid(self, val, err) Check if an emulated value is valid and likely accu-

rate
eval_true_func(self, x) Wrapper for evaluating true function
split_CV(self, xdata, ydata, frac_cv) Splits a dataset into a cross-validation and training

set.
train(self, x_train, y_train) Train a ML algorithm to replace true_func: X –> Y.

__init__(self, true_func: Callable[[numpy.ndarray], numpy.ndarray], emulator_class)
Constructor for Learner class

Parameters

true_func [Callable] Function to be emulated

emulator_class [BaseEmulator] The emulator class to be used

Methods

__init__(self, true_func, numpy.ndarray], . . .) Constructor for Learner class
emulation_is_valid(self, val, err) Check if an emulated value is valid and likely accu-

rate
eval_true_func(self, x) Wrapper for evaluating true function
split_CV(self, xdata, ydata, frac_cv) Splits a dataset into a cross-validation and training

set.
train(self, x_train, y_train) Train a ML algorithm to replace true_func: X –> Y.

1.2.2 layg.emulator.BaseEmulator

class layg.emulator.BaseEmulator
Base class from which emulators should inherit

This class is abstract. The child class must implement the marked methods.

Methods

add_data(self, x_train, y_train) Add data to the training set on the fly

set_emul_error_func
set_emul_func

__init__(self)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(self) Initialize self.
add_data(self, x_train, y_train) Add data to the training set on the fly

Continued on next page

12 Chapter 1. Installation

Learn As You Go

Table 5 – continued from previous page
set_emul_error_func(self, x_cv, y_cv_err)
set_emul_func(self, x_train, y_train)

1.2.3 layg.emulator.cholesky_nn_emulator.CholeskyNnEmulator

class layg.emulator.cholesky_nn_emulator.CholeskyNnEmulator
An emulator based on Cholesky decomposition and nearest neighbours

This emulator described in detail in arXiv:1506.01079.

Methods

add_data(self, x_train, y_train) Add data to the training set on the fly

set_emul_error_func
set_emul_func

__init__(self)
Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(self) Initialize self.
add_data(self, x_train, y_train) Add data to the training set on the fly
set_emul_error_func(self, x_cv, y_cv_err)
set_emul_func(self, x_train, y_train)

1.2.4 layg.emulator.torch_emulator.TorchEmulator

class layg.emulator.torch_emulator.TorchEmulator
Class that uses pytorch to do emulation

The Universal Approximation Theorem says that any Lebesgue integrable function can be approximated by a
feed-forward network with sufficient layers of sufficient width. It doesn’t guarantee that we can train the network
though.

Methods

add_data(self, x_train, y_train) Add data to the training set on the fly
set_emul_error_func(self, x_cv, y_cv_err) Fit a quadratic to the residuals and mean distance to

nearby points

set_emul_func

__init__(self)
Initialize self. See help(type(self)) for accurate signature.

1.2. API 13

Learn As You Go

Methods

__init__(self) Initialize self.
add_data(self, x_train, y_train) Add data to the training set on the fly
set_emul_error_func(self, x_cv, y_cv_err) Fit a quadratic to the residuals and mean distance to

nearby points
set_emul_func(self, x_train, y_train)

14 Chapter 1. Installation

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

15

Learn As You Go

16 Chapter 2. Indices and tables

Index

Symbols
__init__() (layg.emulator.BaseEmulator method), 12
__init__() (layg.emulator.cholesky_nn_emulator.CholeskyNnEmulator

method), 13
__init__() (layg.emulator.torch_emulator.TorchEmulator

method), 13
__init__() (layg.learner.Learner method), 12

B
BaseEmulator (class in layg.emulator), 12

C
CholeskyNnEmulator (class in

layg.emulator.cholesky_nn_emulator), 13

L
Learner (class in layg.learner), 11

T
TorchEmulator (class in

layg.emulator.torch_emulator), 13

17

	Installation
	Examples
	API

	Indices and tables
	Index

